
µProxy: A Hardware Relay
for Anonymous and Secure Internet Access

David Cox and David Oswald

School of Computer Science
The University of Birmingham, UK

davidcoxcontact@gmail.com, d.f.oswald@bham.ac.uk

Abstract. Privacy and anonymity on the Internet have become a se-
rious concern. Even when anonymity tools like Tor or VPNs are used,
the IP and therefore the approximate geolocation from which the user
connects to such a service is still visible to an adversary who controls
the network. Our proposal µProxy aims to mitigate this problem by
providing a relay of user-controlled hardware proxies that allows to con-
nect to a (potentially public) network over a large physical distance.
One endpoint is connected to a public Wifi hotspot, while the other end
connects (over a chain of relay nodes) to the user’s computer. µProxy
uses a lightweight protocol to create a secure channel between two end-
point nodes, whereas the communication can be routed over an arbitrary
amount of relay nodes. The employed cryptography is based on NaCl, us-
ing Curve25519 for the key exchange as well as Salsa20 and Poly1305 for
authenticated payload encryption. µProxy tunnels TCP/IP connections
and can therefore be used to secure and anonymize existing, unprotected
protocols. We implemented µProxy on the ESP8266, a popular Wifi mi-
crocontroller, and show that µProxy incurs a latency of 20.4ms per hop
under normal operating conditions.

Keywords: Privacy, anonymity, ESP8266, secure channel, protocol im-
plementation, wireless networks

1 Introduction

In recent years, anonymity and privacy on the Internet has gained increasing
attention. In a “post-Snowden” world, many seek to avoid ever growing govern-
ment observation, be they political dissidents or simply concerned citizens. An
important privacy leak is that a user’s geolocation can be associated with their
public IP address, giving the adversary an approximate real-time location. Of-
ten, this information is enough for an adversary to begin closing in, employing
traditional methods to improve this approximation and eventually locate the
user.

Current anonymity technologies, such as The Onion Routing Project (Tor) [5]
or Virtual Private Networks (VPNs) aim to address this by relaying traffic
through one or multiple third party nodes. This prevents an adversary from



knowing both the true source and destination of a packet. This method is effec-
tive in separating a user from the sites they are browsing, however does little to
guard their location—an adversary still sees Tor or VPN traffic originating from
the user’s Internet connection, and can still pinpoint the respective person.

Therefore, a system is required that severs this association between public IP
and actual location. In this paper, we present µProxy as a low-cost solution to
this problem. µProxy achieves the goal of location anonymity using an arbitrary
number of interconnected Wifi nodes that form a relay. The relay spans between
the user and the network to which they wish to anonymously connect, e.g., a
public Wifi hotspot. Traffic appears to stem from the final device in the relay,
rather than the user. Attempts to trace the user’s IP address will only lead
to the relay endpoint. Further tracking requires locating an arbitrary number
of (potentially covert) nodes, thus yielding an exponentially expanding search
radius. Such a search is beyond the capability of all but the most well equipped
and dedicated adversary and, in can case, cannot be conducted quickly.

1.1 Related Work

In the research area of unlinking a user’s IP from his geolocation, two notable
efforts have been made: The first is ProxyHam [4], a project that attempted to
do so by providing a device forwarding Wifi connections over a 900MHz Radio
Frequency (RF) link. The unit (with an approximate cost of USD 200) could
operate up to a maximum range of 2.5 km, which the developers stated would
be sufficient to disrupt any physical search, should the IP be traced. The project
was unexpectedly discontinued shortly before its debut at Defcon 2015 [10].

ProxyGambit is a reincarnation of ProxyHam. The project seeks to improve
upon its predecessor by providing greater range and potentially global availabil-
ity [13]. This is achieved via the addition of a 2G Global System for Mobile Com-
munications (GSM) connection as a low-speed alternative when the 900MHz link
is unavailable. The project itself is in the prototype stages, and is not yet a single
unit. The cost for building the device totals USD 234. ProxyGambit is, by the
creators own admission, “an insecure, bare bones proof of concept”, that is not
in active development [13].

Tor [5] and VPN services represent the current defacto anonymity mecha-
nisms on the Internet. As described, they effectively prevent an attacker from
knowing both the source and destination of a given connection. Tor or VPNs
allow a user to access online material without revealing that they have done so.
Such tools are critical when the remote resources being accessed by a user are
sensitive or censored. However it does little to hide that the user has connected
to Tor itself, as the produced traffic is identifiable. In cases where the use of
such privacy tools are grounds for suspicion or even prosecution, this is a serious
problem. This, combined with the lack of location privacy are weakness in the
Tor project.



1.2 Contribution and Outline

µProxy attempts to improve on the existing relay solutions (ProxyHam and
ProxyGambit) outlined above by prioritizing size and affordability at the expense
of range per module. We use a widely available, low-cost Wifi microcontroller,
the ESP8266 (ESP) [9,8], for which ready-made modules (cf. Figure 1) can be
bought for less than USD 3 per unit. Both relay and endpoint connections are
then established over Wifi, which removes the need for a second band support
(e.g. GSM or 900MHz RF). This vastly reduces unit cost and form factor, and
hence potentially allows covert deployment. For example, an ESP module could
be hidden inside a phone charger or power outlet, which also solves the problem
that the module needs a power supply. Furthermore, the reduction in unit cost

Fig. 1. Different ESP modules, Euro coin for scale.

increases the economic viability of multiple unit relays, where all previous so-
lutions having been limited to a single pair of conspicuous devices. When used
in combination with Tor or a VPN, the separation of IP address and user lo-
cation prevents Tor/VPN traffic from being associated with an individual. If a
Tor or VPN session, running through µProxy, is successfully reconstructed, the
adversary is still unaware of the user’s true location. As such, µProxy and other
anonymity tools complement each other and are expected to be used in tandem.
The code for µProxy is placed in the public domain.

The remainder of this paper is structured as follows: In Section 2, we de-
scribe the general design decisions behind µProxy and introduce the utilized
implementation platform, the ESP. Section 3 provides details on the employed
cryptographic functionality to secure the relay traffic based on the Networking
and Cryptographic Library (NaCl) [1] and evaluates the system’s security. In
Section 4, we present the underlying protocol and evaluate the overhead of our
prototypical implementation, before concluding in Section 5.



2 System Design

At its core, µProxy is formed by a Wifi relay (a series of nodes) with a “daisy
chain” topology, as shown in Figure 2. The relay has two endpoints: the local
endpoint to which the user connects, and the remote endpoint, which connects
to the Internet, e.g., through a public Wifi hotspot. Between the endpoints, a
series of relay nodes forwards the traffic. Note that in general, there can be N
relay nodes, rather than the single one shown in Figure 2. Hidden Wifi networks
are broadcast by the individual relay nodes, realized with ESP modules. These
modules are placed along a physical path between the two endpoint locations.
A tunnel between these two endpoints is created that seamlessly forwards all
traffic. Each module connects to the Wifi of the module ahead of it in the chain,
while accepting a connection from the previous module. The ability of the ESP
to act both as Wifi client and access point at the same time forms the backbone
of the µProxy relay.

User's PC
Local 

endpoint
Remote 
endpoint

Relay 
node

Public 
Wifi

Fig. 2. µProxy topology with a single relay node. Dark arrows represent hidden
Wifi connections, green arrows normal Wifi connections.

Requirements and Protocol Design The design and development of a protocol
to manage the Wifi relay was required, and represented one of main undertak-
ings of the µProxy project. The protocol has to control the set-up of the relay
(with an arbitrary number of devices), provide external endpoint interfaces, sup-
port required cryptography, and perform data transmission over the relay. This
protocol has to run within the restrictive embedded system environment of the
ESP. As such, runtime resourse usage as well as complied code size had to be
minimized. The protocol also has to be sufficiently lightweight as not not mo-
nopolize the ESPs 80MHz processor core, as doing so would prevent the Wifi
from functioning correctly.

Robustness and Reliability We require that the µProxy control protocol must
be expected to run, without failure, for an indefinite period. Manually resetting
relay nodes after a firmware crash would be a serious problem, as doing so
might expose the existence of the relay. In order to remain covert, the individual
devices must be as robust and autonomous as possible. Also, reaching devices
installed in remote locations may be impractical once deployed. µProxy does not



guarantee that the end-to-end link it creates is reliable, i.e., the relay does not
ensure that every packet will reach its destination. Like other hardware solutions
that provide a physical networking layer link, it is assumed that transmission
reliability is a responsibility of the transport layer. In the vast majority of cases
this will be the TCP session underpinning the network application. This TCP
session will itself ensure reliability by resending all lost packets. Reimplementing
this functionality on the µProxy level would be redundant, and mandate that
intra-relay communications be constructed via TCP sessions between every node.
The additional complexity would increase packet processing time and thus reduce
overall throughput while proving no tangible benefit to users. Therefore, the
µProxy protocol does not guarantee transmission reliability.

Endpoints The endpoint nodes form a connection to the outside world; be it to
the user or the remote network the relay is tunneling to. A user connects to the
relay simply by connecting to the access point opened by his local endpoint. Sim-
ilarly, data leaves the relay by having the remote endpoint connect to the far-off
Wifi hotspot. The relay should then transparently tunnel TCP/IP connections
transparently on both sides. However, this proved impossible to achieve on the
ESP modules. In both cases doing so required an interface that could send or
receive arbitrary packets from the device’s Wifi stack. In the case of the local
endpoint, all packets from the user needed to be intercepted before they were
routed by the Wifi stack, and instead diverted into the relay. In the case of the
remote endpoint, the ability to send arbitrary packets onto a remote network
was required. These packets would be relay traffic, whose source IP had been
changed to match the IP of the remote endpoint. Yet, the necessary hooks into
the ESP Wifi stack do not exist in the available API. Therefore, rather than for-
warding arbitrary traffic, µProxy creates TCP sockets at each end of the relay. It
is the data from these connections that is then tunneled. For a user this requires
to connect to a listener at the local endpoint IP. At the remote endpoint, the
module connects to a preconfigured address.

This creates an end-to-end connection between the user and the server while
still proving the required features of µProxy. To improve the usability of this
approach, the local endpoint could provide a (automatic) proxy configuration
(e.g., for HTTP(S)). An alternative solution would be to integrate the informa-
tion on remote IP to connect to into the protocol and have a software component
on the user’s side that provides a transparent network adapter locally. Finally,
the remote endpoint could also connect to a VPN server to realize transparent
forwarding through the relay: the user the connects to the VPN port on the local
endpoint, while the remote endpoint connects to the VPN server (with the IP
pre-programmed into the endpoint’s firmware).

3 Cryptography and System Security

Secure and correctly implemented cryptography is essential to µProxy, but the
algorithms offered by the ESP are poorly documented and not easily accessible



to a developer. The encryption for the Wifi and TCP/IP stacks (WPA2, TLS,
etc), are, to the knowledge of the author, correct implementations of standard
specifications. However this functionality is private to the OS, and is not accessi-
ble through the provided Application Programming Interface (API). Therefore,
it can only be used as part of a larger API call, such as connecting to a WPA2
access point. The “ESPnow” functionality [7] also provides encryption, however
no documentation exists as to what scheme is employed.

NaCl Implementation Therefore, we opted to use a pure software implementation
for securing the transmission channel. We selected NaCl, a cryptographic library
initially presented in [1]. NaCl supports Elliptic Curve Cryptography (ECC)
based key exchange using Curve25519 [2], as well as authenticated encryption
using Salsa20 and Poly1305. Since it avoids any secret-dependent load addresses
and branches, it is inherently protected against timing attacks.

As a starting point for porting the NaCl library to a 32-bit microcontroller
such as the ESP, two variations exist: µNaCl and TweetNaCl. Rather than be-
ing optimised for desktop environments, µNaCl is a project that aims at pro-
viding optimized implementations for specific embedded microprocessors [12].
Currently, µNaCl is available for Atmel Atmega, TI MSP430 and ARM Cortex-
M0. The second variation is TweetNaCl, a reimplementation of NaCl [3] that fits
into 100 tweets.

We chose TweetNaCl as the foundation of the ESP NaCl implementation.
Due to the code simplicity of TweetNaCl, the complexity of any modifications
and implementation changes is drastically reduced. When producing an ESP
compatible version of TweetNaCl, a major challenge is compiled code size. The
compiled µProxy firmware is stored on the external flash of the module. The de-
fault boot behavior is to load the entire code segment of this flash image into the
instruction RAM (IRAM). The unmodified TweetNaCl binaries were too large
to be loaded into the ESP’s limited IRAM. However, it is possible to prevent
specific functions from being loading into IRAM; instead they are read from
flash at runtime [14]. This allowed for the majority of the TweetNaCl binary
to remain in flash, reducing IRAM usage. Rarely used functions, such as key
pre-computation, remain in flash with only negligible impact on performance.
However, “high traffic” areas, such as the Salsa20 stream cipher, were kept in
IRAM in order to improve performance. Furthermore, we made use of the fact
that the asymmetric keys of the nodes change never or infrequently. NaCl al-
low for pre-computation of the ECC key exchange [1], effectively reducing the
computation overhead to symmetric crypto only during normal operation.

3.1 Key Distribution and Random Number Generation

Unlike typical desktop computers, the ESP does not have inbuilt support to
generate cryptographically secure randomness. In fact, the device API gives no
means of generating random bytes. This limits the cryptography capabilities of
the device, most notably, on-device key generation. Therefore, we did not use
dynamically keys entirely and opted for static key information. These key are



generated by a secure source at compile time, therefore bypassing the ESP’s
inherent entropy problems. Being based on public key cryptography, NaCl has
the advantage that the public keys can be exchanged in the setup phase. How-
ever, as mentioned, in the implementation created for the purposes of this paper,
the public key of the respective communication partner is hardcoded into the
firmware of the module.

In cascade systems like Tor, re-encryption is used to hide previous header
information and provide forward secrecy. Since all data takes a single path in
µProxy, we did not use re-encryption: all cryptographic operations are performed
on the endpoints, while the intermediary relay nodes only forward already en-
crypted packets. This ensures that (i) a compromise of a relay node does not
leak any key material and (ii) reduces the computational load on relay nodes.

3.2 Security Considerations

For evaluating the system security of µProxy, we use the following adversary
model: It is assumed that the adversary knows the µProxy system and can pas-
sively eavesdrop on Wifi traffic as well as actively inject packets. Furthermore, if
he has physical access to an ESP module, he is able to extract the contents of the
flash memory and can also replace the firmware with a modified version. Finally,
we assume that the adversary cannot break the used cryptographic primitives
provided by NaCl.

We do not consider the case of an adversary controlling the network beyond
the remote endpoint or (parts of) the Internet. As stated, the goal of µProxy
is to decouple the user’s physical location from his entry point to the Internet,
not to anonymize the network traffic itself. Hence, as mentioned in Section 1.2,
µProxy should be combined with anonymity tools like Tor or VPN.

Relay Nodes In µProxy, packets sent across the relay are encrypted on one
endpoint and decrypted on the other. All intermediary nodes do not re-encrypt
data, but simply forward it to the neighboring node. Data is transmitted across
the relay using local IP addresses (within the separate network between each
pair of nodes), therefore, no information is leaked if an IP or MAC address is
seen. When observing a packet of traffic between two relay nodes, the attacker
can assume that its destination is the next relay node and its source the previous
one. Besides, since hidden Wifi networks are used to connect between the relay
nodes, the SSIDs do not reveal information, e.g., the location within the relay.

Successful impersonation of an intermediate node does not compromise the
relay, as doing so does not yield any cryptographic keys. However, it allows
an attacker to disrupt relay communications without physically locating and
destroying a node. An attacker can be in the vicinity of a node and subsequently
impersonate it to disrupt the relay by “black-holing” all incoming relay traffic.
µProxy is not designed to protect against Denial of Service (DoS) attacks

Local Endpoint and Remote Endpoint With key information only contained
within the two endpoints, they represent the main vulnerable nodes of the relay.



We assume that the local endpoint is inherently secure, as it is under direct user
control, and a compromise of the local endpoint also implies that the user’s lo-
cation has been discovered. The connection between the user’s PC and the local
endpoint is secured using WPA2, hence, this connection has identical security
guarantees as a standard Wifi network.

For the remote endpoint, if an adversary can overcome the obstacles of tracing
and subsequently locating the external edge of the relay, then it would be possible
for them to read key information from the ESP flash and decrypt the µProxy
session. Alternatively, the adversary could change the ESP firmware to forward
a copy of the complete traffic to his own host, or perform arbitrary modifications
to the relay traffic. However, this does not substantially reduce security because
once the endpoint has been located, the attacker could in any case eavesdrop or
modify the decrypted traffic on the (public) hotspot network that the remote
endpoint is connected to. This vulnerability is inherent to any connection across
a network not in the user’s control.

Furthermore, a compromise of the remote endpoint does not imply that the
user’s location can be instantly revealed: the adversary still only obtains in-
formation on the relay node adjacent to the remote endpoint. He then would
have to discover this relay node and trace the path back to the local endpoint
step-by-step.

4 Prototypical Implementation

In this section, we describe the central aspects of our µProxy implementation,
and evaluate the overhead of µProxy in terms of latency added per relay node.

4.1 Relay Protocol

ESPnow As the underlying transfer protocol between relay nodes, we used
ESPnow, an API functionality that provides an interface that allows ESP mod-
ules to communicate with each other below the IP layer. It allows to register a
number of MAC addresses as known ESP modules. A role flag indicates the Wifi
mode that the given module is currently in. Once a pair of modules have been
paired, data can be sent between them in a single API call, independent of higher
layers like TCP/IP. This API is used for all µProxy intra-relay communication
for two reasons:

First, ESPnow allows for data transfer without the management requirements
of establishing TCP sockets and subsequent sessions for each node, i.e., is simple
to employ. Secondly, the payload of these messages is easily and directly acces-
sible. This is crucial as it allows manipulation of packet data, giving the means
to encrypt and decrypt traffic sent via this API using our NaCl implementation.
Without ESPnow, much of the complexity and runtime computation of µProxy
would be spent managing a series of TCP sessions.

A µProxy packet is composed of an 8-byte counter ctr, followed by an
arbitrary amount of authenticated ciphertext generated by the NaCl function



crypto_box_afternm(). The counter is incremented for each transmitted and
received packet, and taken as the lower eight byte of the 24-byte nonce used by
NaCl. The upper 16-byte of the nonce are set to a fixed value, which can be
specific to a µProxy instance. Having an eight byte counter allows to exchange
at most 264 bytes over the relay, a value that should be sufficient for practical
use cases.

Initialization 
State Ready StateRegistration 

State

Power On Init Complete Successor and 
predecessor 
nodes found

Failed to reach 
nodes Processing 

packet

Fig. 3. Overview of the µProxy protocol.

State Machines As shown in Figure 3, the protocol begins by initializing the
node. Various API calls initialize all OS functionality, and configure the access
point and Wifi station. This initialization runs in a method that is automatically
called after the firmware has been loaded into IRAM. Once initialization has

TCP 
socket buffer

Decryption

Next Relay node

Encryption

Plaintext in

Ciphertext out
Ciphertext in

Plaintext out

Fig. 4. Data processing loop for µProxy endpoints.

been completed, the node enters a registration phase. In this phase, the node
repeatedly attempts to confirm the existence of its successor and predecessor
nodes, only exiting from this state once it has found these nodes. It achieves this



by first establishing the respective Wifi connection. In the case of the predecessor,
the node waits for a matching MAC address to connect to its access point, while
in the case of successor, the node attempts to connect to the access point of
its successor. Once these connections have been made, the MAC addresses are
registered with the ESPnow API.

After being registered, the node is operational and ready to receive data.
Callback functions are established for the receipt of data from another relay
node, and if required, an external TCP source. The device remains in this state,
processing all incoming data, until loss of power. Details on how intermediary
nodes and endpoint nodes process data are shown in Figure 5 and Figure 4,
respectively.

Predecessor 
node

Forward

Successor Node

Forward

Ciphertext inCiphertext out

Ciphertext in Ciphertext out

Fig. 5. Data forwarding loop for µProxy intermediary relay nodes.

Static Routing All routing between µProxy nodes is statically defined. Each
module has routing information for its two neighbor nodes. This removes the
need for any active routing protocol within the relay. Dynamic routing using
modified variants of interior routing protocols such as Routing Information Pro-
tocol (RIP) [11] and Open Shortest Path First (OSPF) [15] were considered,
allowing the relay to reconfigure after initial deployment. This would open up
the possibility of adding or removing nodes within the relay and potentially al-
low for arbitrary network topologies. However, for reasons of security (to prevent
the addition of malicious nodes) and to minimize overhead in our prototype, the
decision was made to statically route the µProxy relay. The MAC address of
each node’s successor and predecessor are defined at compile time as part of the
node’s firmware.

Relay Wifi Networks Wifi networks created by relay nodes are hidden, i.e., do not
broadcast their SSID. This prevents some devices from displaying the existence



of the network, while other may display the generic SSID: “Hidden Network”.
This measure does not hide the relay from an adversary completely, however
it may help to keeping a relay unknown to nearby smartphone users. It also
prevents an attacker from ascertaining a node’s function from the SSID.

Robustness Care was taken to implement the relay protocol in a way that max-
imizes robustness. Potential failure points were identified, and fail-safes imple-
mented that allow the relay to remain operational. Nodes will automatically
attempt to reconnect to its successor if the connection was lost. All memory
management exceptions, such as heap allocation failures, are caught and han-
dled in a non-fatal way. In such situations, µProxy opts to potentially discard
relay packets that cannot be allocated in order to maintain the overall opera-
tion of the relay. As discussed previously, µProxy, by design, does not provide
transmission reliability, so potential packet loss is not a serious concern. Memory
failures remain rare, and are only experienced when the relay is attempting to
perform a transmission with throughput beyond its capacity. In these cases, the
TCP session will adjust its transfer rate to match the maximum throughput of
the relay, meaning that packet loss will be temporary.

Successor and predecessor nodes may be registered even if those nodes are
in the active state. This allows a node to re-establish itself within the relay if
it experienced power loss. This is of special importance, as continuous power
availability cannot be guaranteed if devices are placed at a location outside the
user’s control. As a last resort, nodes are able to re-establish the relay after a
kernel exception. Devices then reboot and follow the protocol steps as normal.
The static design of the protocol and much of the node configuration information
allows the node to reach the registration phase using only information stored in
the device memory.

The result of these implementation decisions is a relay that can operate
indefinitely (given power supply), allowing µProxy to provide a secure link that
is available to the user without the need for post-deployment maintenance.

4.2 Performance Evaluation

Unlike other solutions, µProxy supports a relay of an arbitrary number of hops
a opposed to a single pair of devices. Hence, relay scalability and the impact of
length on performance become an important consideration.

To evaluate this aspect, we estimated how the number of nodes N affects the
round trip time T . We define the end of the relay to be the point at which data
is pushed out to the TCP socket buffer, rather than the time of receipt on an
external machine. This is to remove the impact of non-relay hardware from any
performance evaluation, as this hardware is outside the control of µProxy. We
can define T as:

T = 2xN = 2 ((N − 1)W + E +D +NK)

where x is the sum of all latency incurred by using the relay. This latency
has three sources: (i) the series of Wifi connections that are used to transmit



data between relay nodes (W ), (ii) the cost of cryptography at both the of the
endpoints (E, D), and (iii) the latency incurred by other internal computations
such as passing the message between internal functions (K). The term K turned
out to be negligible and therefore is absorbed into W , yielding:

T = (2N − 2)W + 2E + 2D

From this formula, it is clear that µProxy latency scales linearly with the number
of nodes. To quantify this further, data was collected on the time taken to encrypt
and decrypt data as well as the overall round trip time of a packet. These values
are then substituted into the formula to provide an estimate of W .

Although the cryptographic term is represented as constants E, D, this is not
strictly true: The value is highly dependent of the length of the message. This
relation is linear, as can be seen in the test data. Hereafter it is assumed that
the relay is only transporting packets of a size of 225 bytes. This is the ESPnow
Maximum Transmission Unit (MTU), and represents the worst case scenario
for relay performance. Other user applications such as Telnet [16], which send
exclusively single byte packets, will produce significantly better results for the
cryptographic variable. At maximum packet length, average encrypt and decrypt
times were E = 1.9ms and D = 2.3ms, respectively.

It was not possible to to accurately measure the time taken to transmit over
a single Wifi connection, as this would require the synchronization of separate
device clocks. Therefore, the packet round trip time T was measured and in-
terpolated to represent a single Wifi connection. Testing was conducted with a
relay of N = 3 devices, yielding T = 90ms.

With the above data, we have W = T
4 − 2.1ms = 20.4ms. This value repre-

sents the latency incurred per node beyond the two endpoints. For example, a
relay of N = 11 nodes would have an expected round trip time of T = 416.4ms.
The cost for the ESP modules to form such a relay would be USD 35 at most.

Regarding the range, the manufacturer Espressif report the module of have
a maximum open-air range of 360m [6]. This is possibly an overstatement and
likely only accounts for an access point being visible on a specialized Wifi re-
ceiver. µProxy requires an access point to be visible to other ESP modules, and
have a signal strength sufficient for data transmission. Our testing has shown
that a value closer to 200m is appropriate, with 100m being an estimate with
safety margin. Hence, an 11-node relay could stretch over 1 km. The latency of
round trip time of T = 416.4ms is high compared to typical connections (cables,
long-range RF) over the same distance. Still, in our tests, this latency does not
prevent µProxy from delivering a usable browsing experience. Furthermore, test-
ing showed that round trip times were more than halved when sending smaller
packets, e.g., representative of an SSH connection.

5 Conclusion and Future Work
In this paper we presented µProxy, a relay solution to anonymously connect
to the Internet through a remote Wifi, e.g., a public hotspot. Due to the low-
cost nature of the ESP, long relays can be established at minimal cost. The



measured delay per relay hop of approximately 20ms is sufficiently low to allow
for practical use of this relay in cases where geolocation privacy is crucial. To
secure the relay channel, NaCl is ported to the ESP and used to encrypt and
authenticate the tunneled traffic.

With respect to future work, there are several open problems in µProxy:
First, it would be desirable to establish a fully transparent relay, either through
potentially available functions on the side of the ESP or by providing a custom
network driver for the user’s OS. Secondly, a more dynamic approach of key man-
agement should be investigated, for example, exchanging long-term keys during
the setup phase by placing the respective endpoints in a shielded environment
and transmitting the public keys to the other partner. The necessary extensions
to the protocol would be minimal and facilitate the actual use of the devices.
An additional aspect would be to provide forward security by integrating re-
keying into the protocol, e.g., by exchanging ephemeral keys at certain intervals,
authenticated with the long-term keys.

To facilitate such modifications and improvements as well as security reviews,
we placed the source code of µProxy in the public domain and published it online
at: https://github.com/david-oswald/microproxy.

References

1. D. Bernstein, T. Lange, and P. Schwabe. The security impact of a new crypto-
graphic library. In A. Hevia and G. Neven, editors, Proceedings of LatinCrypt 2012,
page 159–176. Springer, Nov. 2012.

2. D. J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, International Conference on Theory
and Practice in Public-Key Cryptography – PKC’06, pages 207–228. Springer, 2006.

3. D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and S. Smetsers.
TweetNaCl: a crypto library in 100 tweets. In A. Hevia and G. Neven, editors,
Proceedings of LatinCrypt 2014. Springer, Sept. 2014.

4. B. Caudill. Paranoia and ProxyHam: High-Stakes Anonymity on the Internet.
https://www.defcon.org/html/defcon-23/dc-23-speakers.html, Oct. 2015.

5. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-generation
Onion Router. In Proceedings of the 13th USENIX Security Symposium, SSYM’04.
USENIX Association, 2004.

6. Espressif. Espressif Smart Connectivity Platform: ESP8266. available online:
https://nurdspace.nl/images/e/e0/ESP8266_Specifications_English.pdf,
Oct. 2013.

7. Espressif. ESP-NOW User Guide. available online: https://espressif.com/
sites/default/files/documentation/esp-now_user_guide_en.pdf, July 2016.

8. Espressif. ESP8266 Datasheet. available online: https://espressif.com/sites/
default/files/documentation/0a-esp8266ex_datasheet_en.pdf, Feb. 2016.

9. Espressif. ESP8266EX. available online: http://espressif.com/products/
hardware/esp8266ex/overview/, Mar. 2016.

10. A. Greenberg. Online Anonymity Project ProxyHam Mysteri-
ously Vanishes. available online: http://www.wired.com/2015/07/
online-anonymity-project-proxyham-mysteriously-vanishes/, July 2015.

https://github.com/david-oswald/microproxy
https://www.defcon.org/html/defcon-23/dc-23-speakers.html
https://nurdspace.nl/images/e/e0/ESP8266_Specifications_English.pdf
https://espressif.com/sites/default/files/documentation/esp-now_user_guide_en.pdf
https://espressif.com/sites/default/files/documentation/esp-now_user_guide_en.pdf
https://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://espressif.com/products/hardware/esp8266ex/overview/
http://espressif.com/products/hardware/esp8266ex/overview/
http://www.wired.com/2015/07/online-anonymity-project-proxyham-mysteriously-vanishes/
http://www.wired.com/2015/07/online-anonymity-project-proxyham-mysteriously-vanishes/


11. C. Hedrick. Routing Information Protocol. RFC 1058, RFC Editor, June 1988.
12. M. Hutter and P. Schwabe. µNaCl – The Networking and Cryptography library for

microcontrollers. available online: http://munacl.cryptojedi.org/index.shtml,
Oct. 2015.

13. S. Kamkar. ProxyGambit. available online: http://samy.pl/proxygambit/, Oct.
2015.

14. C. Lohr. How to directly program an inexpensive ESP8266
Wifi module. available online: http://hackaday.com/2015/03/18/
how-to-directly-program-an-inexpensive-esp8266-wifi-module/, Mar.
2015.

15. J. Moy. OSPF Version 2. RFC 2178, RFC Editor, July 1997. available online:
https://www.rfc-editor.org/info/rfc2178.

16. T. O’Sullivan. Telnet Protocol: A Proposed Document. RFC 0495, RFC Editor,
May 1971.

http://munacl.cryptojedi.org/index.shtml
http://samy.pl/proxygambit/
http://hackaday.com/2015/03/18/how-to-directly-program-an-inexpensive-esp8266-wifi-module/
http://hackaday.com/2015/03/18/how-to-directly-program-an-inexpensive-esp8266-wifi-module/
https://www.rfc-editor.org/info/rfc2178

	Proxy: A Hardware Relay for Anonymous and Secure Internet Access
	David Cox and David Oswald

